Distribution of Courses, Syllabii and Credits for B.Sc. (Hons.) Agriculture

6th Semester

Sl.	Course No.	Title of Course	Credit(s)
No			
1	AGR 351	Principles of Organic Farming	2(1+1)
2	AGR 352	Farming System and Sustainable Agriculture	2(1+1)
3	GPB 353	Intellectual Property Rights	1(1+0)
4	AEN 354	Management of Beneficial Insects	2(1+1)
5	AGMP 355	Geo-informatics and Nanotechnology for Precision Farming	2(1+1)
6	AST 356	Computer Applications and Agriculture Informatics	2(1+1)
7	HORT 357	Post-harvest Management and Value-addition of Fruits and	2(1+1)
		Vegetables	
8	AEG 358	Renewable Energy and Green Technology	2(1+1)
9	FSN 359	Principles of Food Science and Nutrition	2(2+0)
10	ES 360	Environmental Studies and Disaster Management	2(1+1)
11	EC 361-366	Elective Course	3(2+1)
		Total	19+3

AGR 351 Principles of Organic farming

2(1+1)

Theory

Organic farming: principles, status and its scope in India; Initiatives taken by Government (central/state), NGOs and other organizations for promotion of organic agriculture; Organic ecosystem and their concepts; Organic nutrient resources and its fortification; restrictions to nutrient use in organic farming; Choice of crops and varieties in organic farming; Fundamentals of insect, pest, disease and weed management under organic mode of production; Operational structure of NPOP; Certification process and standards of organic farming; Processing, labeling, marketing and export potential of organic products, and economic considerations and viability.

Practical

Visit of organic farms to study the various components and their utilization; Preparation of enrich compost, vermicompost, bio-fertilizers / bio-inoculants, their quality analyses and applications; Use of green manures; Raising of high-value crops under organic production system; Indigenous technology knowledge (ITK) for nutrient, insect, pest disease and weed management; Cost of organic production system; Post harvest management; grading, packaging, handling and quality aspect.

AGR 352 Farming System and Sustainable Agriculture

2(1+1)

Theory

Farming System: scope, importance and concept; Types of farming system and influential factors; Farming system components and their maintenance; Cropping system and pattern, multiple cropping, efficient cropping system and their evaluation, allied enterprises and their importance; Tools for determining production and efficiencies in cropping and farming system; Integrated Farming System (IFS): historical background, objectives, characteristics, components and advantages, Site-specific development of IFS model for different agro-climatic zones; Resource-use-efficiency and optimization techniques, resource cycling and flow of energy in different farming system; Farming system and environment; Sustainable agriculture: concept and impact on agriculture, indicators of sustainability, adaptation and mitigation; Conservation agriculture strategies in agriculture, techniques for sustainability of HEIA, LEIA and LEISA.

Practical

Preparation of cropping scheme for irrigated and dryland situations; Preparation of integrated farming system model for wetlands and drylands; Calculations on yield advantage and efficiency of cropping and farming systems; Preparation of map showing different cropping systems for different districts / agro-climatic zones of West Bengal Visit of IFS models at University and farmers' fields in different agro-climatic zones; Study on indicators of sustainability; Cultivation practices for conservation agriculture.

Intellectual property: history and concept; Brief introduction to GATT, WTO, TRIPs and WIPO; Treaties for IPR protection: Madrid protocol, Berne convention, Budapest treaty, etc.; Types of intellectual property and legislations related to IPR in India: Patents, Copyrights, Trademark, Industrial design, Geographical indication, Integrated circuits, Trade secrets; Patents Act 1970 and patent system in India: patentability, process and product patent, filing of patent, patent specification, patent claims, patent opposition and revocation, infringement, compulsory licensing, Patent Co-operation Treaty, patent search and patent database; Origin, history and introduction to UPOV for protection of plant varieties; PPV&FR Act 2001: origin, structure and chapters, rights of breeders, researcher and farmers, registration of plant varieties and genome saviour awards; Traditional knowledge and rights of TK holders; Convention on biological diversity, International treaty on plant genetic resources for food and agriculture (ITPGRFA); Indian Biological Diversity Act, 2002: salient features, access and benefit sharing.

Importance of beneficial Insects, Beekeeping and pollinators, bee biology, commercial methods of rearing, equipment used, seasonal management, bee enemies and disease. Bee pasturage, bee foraging and communication. Insect pests and diseases of honey bee. Role of pollinators in cross pollinated plants.

Types of silkworm, voltinism and biology of silkworm. Mulberry cultivation, mulberry varieties and methods of harvesting and preservation of leaves. Rearing, mounting and harvesting of cocoons. Pest and diseases of silkworm, management, rearing appliances of mulberry silkworm and methods of disinfection.

Species of lac insect, morphology, biology, host plant, lac production – seed lac, button lac, shellac, lac- products. Identification of major parasitoids and predators commonly being used in biological control.

Insect orders bearing predators and parasitoids used in pest control and their mass multiplication techniques. Important species of pollinator, weed killers and scavengers with their importance.

Practical

Honey bee species, castes of bees. Beekeeping appliances and seasonal management, bee enemies and disease. Bee pasturage, bee foraging and communication. Types of silkworm, voltinism and biology of silkworm. Mulberry cultivation, mulberry varieties and methods of harvesting and preservation of leaves. Species of lac insect, host plant identification. Identification of other important pollinators, weed killers and scavengers. Visit to research and training institutions devoted to beekeeping, sericulture, lac culture and natural enemies. Identification and techniques for mass multiplication of natural enemies.

Precision agriculture: concepts and techniques; their issues and concerns for Indian agriculture; Geo-informatics- definition, concepts, tool and techniques; their use in Precision Agriculture. Crop discrimination and Yield monitoring, soil mapping; fertilizer recommendation using geospatial technologies; Spatial data and their management in GIS; Remote sensing concepts and application in agriculture; Image processing and interpretation; Global positioning system (GPS), components and its functions; Introduction to crop Simulation Models and their uses for optimization of Agricultural Inputs; STCR approach for precision agriculture; Nanotechnology, definition, concepts and techniques, brief introduction about nanoscale effects, nano-particles, nano-pesticides, nano-fertilizers, nano-sensors, Use of nanotechnology in seed, water, fertilizer, plant protection for scaling-up farm productivity.

Practical

Introduction to GIS software, spatial data creation and editing. Introduction to image processing software. Visual and digital interpretation of remote sensing images. Generation of spectral profiles of different objects. Supervised and unsupervised classification and acreage estimation. Multispectral remote sensing for soil mapping. Creation of thematic layers of soil fertility based on GIS. Creation of productivity and management zones. Fertilizers recommendations based of VRT and STCR techniques. Crop stress (biotic/abiotic) monitoring using geospatial technology. Use of GPS for agricultural survey. Formulation, characterization and applications of nanoparticles in agriculture. Projects formulation and execution related to precision farming.

Introduction to Computers, Operating Systems, definition and types, Applications of MS-Office for document creation & Editing, Data presentation, interpretation and graph creation, statistical analysis, mathematical expressions, Database, concepts and types, uses of DBMS in Agriculture, World Wide Web (WWW): Concepts and components. Introduction to computer programming languages, concepts and standard input/output operations.

e-Agriculture, concepts and applications, Use of ICT in Agriculture. Computer Models for understanding plant processes. IT application for computation of water and nutrient requirement of crops, Computer-controlled devices (automated systems) for Agri-input management, Smartphone Apps in Agriculture for farm advises, market price, postharvest management etc; Geospatial technology for generating valuable agri-information. Decision support systems, concepts, components and applications in Agriculture, Agriculture Expert System, Soil Information Systems etc for supporting Farm decisions. Preparation of contingent crop-planning using IT tools.

Practical

Study of Computer Components, accessories, practice of important DOS Commands. Introduction of different operating systems such as windows, Unix/ Linux, Creating, Files & Folders, File Management. Use of MS-WORD and MS Power-point for creating, editing and presenting a scientific Document. MS-EXCEL - Creating a spreadsheet, use of statistical tools, writing expressions, creating graphs, analysis of scientific data. MS-ACCESS: Creating Database, preparing queries and reports, demonstration of Agri-information system. Introduction to World Wide Web (WWW). Introduction of programming languages. Hands on Crop Simulation Models (CSM) such as DSSAT/Crop-Info/CropSyst/ Wofost; Computation of water and nutrient requirements of crop using CSM and IT tools. Introduction of Geospatial Technology for generating valuable information for Agriculture. Hands on Decision Support System. Preparation of contingent crop planning.

HORT(A) 357 Post-harvest Management and Value addition of Fruits and Vegetables

Importance of post-harvest processing of fruits and vegetables, extent and possible causes of post harvest losses; Pre-harvest factors affecting postharvest quality, maturity, ripening and changes occurring during ripening; Respiration and factors affecting respiration rate; Harvesting and field handling; Storage (ZECC, cold storage, CA, MA, and hypobaric); Value addition concept; Principles and methods of preservation; Intermediate moisture food- Jam, jelly, marmalade, preserve, candy – Concepts and Standards; Fermented and non-fermented beverages. Tomato products- Concepts and Standards; Drying/ Dehydration of fruits and vegetables – Concept and methods, osmotic drying. Canning — Concepts and Standards, packaging of products.

Practical

Applications of different types of packaging, containers for shelf life extension. Effect of temperature on shelf life and quality of produce. Demonstration of chilling and freezing injury in vegetables and fruits. Extraction and preservation of pulps and juices. Preparation of jam, jelly, RTS, nectar, squash, osmotically dried products, fruit bar and candy and tomato products, canned products. Quality evaluation of products -- physico-chemical and sensory. Visit to processing unit/ industry.

Classification of energy sources, contribution of these of sources in agricultural sector, Familiarization with biomass utilization for biofuel production and their application, Familiarization with types of biogas plants and gasifiers, biogas, bioalcohol, biodiesel and biooil production and their utilization as bioenergy resource, introduction of solar energy, collection and their application, Familiarization with solar energy gadgets: solar cooker, solar water heater, application of solar energy: solar drying, solar pond, solar distillation, solar photovoltaic system and their application, introduction of wind energy and their application.

Practical

Familiarization with renewable energy gadgets. To study biogas plants, To study gasifier, To study the production process of bio-fuels. Familiarization with different solar energy gadgets. To study solar photovoltaic system: solar light, solar pumping, solar fencing. To study solar cooker, To study solar drying system. To study solar distillation and solar pond.

Concepts of Food Science (definitions, measurements, density, phase change, pH, osmosis, surface tension, colloidal systems etc.); Food composition and chemistry (water, carbohydrates, proteins, fats, vitamins, minerals, flavours, colours, miscellaneous bioactives, important reactions); Food microbiology (bacteria, yeast, moulds, spoilage of fresh & processed foods, Production of fermented foods); Principles and methods of food processing and preservation (use of heat, low temperature, chemicals, radiation, drying etc.); Food and nutrition, Malnutrition (over and under nutrition), nutritional disorders; Energy metabolism (carbohydrate, fat, proteins); Balanced/ modified diets, Menu planning, New trends in food science and nutrition.

Environmental Studies

Theory

Multidisciplinary nature of environmental studies Definition, scope and importance.

Natural Resources: Renewable and non-renewable resources. Natural resources and associated problems:-

- a) Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people.
- b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefitsh and problems.
- c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
- d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Case studies.
- f) Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

Ecosystems • Concept of an ecosystem. • Structure and function of an ecosystem. • Producers, consumers and decomposers. • Energy flow in the ecosystem. • Ecological succession. • Food chains, food webs and ecological pyramids. • Introduction, types, characteristic features, structure and function of the following ecosystem:-

a. Forest ecosystem; b. Grassland ecosystem; c. Desert ecosystem; d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and its conservation:- Introduction, definition, genetic, species & ecosystem diversity and biogeographical classification of India.

Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values. Biodiversity at global, National and local levels, India as a mega-diversity nation.

Hot-spots of biodiversity.

Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts. Endangered and endemic species of India.

Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

Environmental Pollution: definition, cause, effects and control measures of :-

- a. Air pollution; b. Water pollution; c. Soil pollution; d. Marine pollution; e. Noise pollution;
- f. Thermal pollution; g. Nuclear hazards.

Solid Waste Management: causes, effects and control measures of urban and industrial wastes.

Role of an individual in prevention of pollution.

Social Issues and the Environment:

From Unsustainable to Sustainable development

Urban problems related to energy

Water conservation, rain water harvesting, watershed management

Environmental ethics: Issues and possible solutions, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. dyes.

Wasteland reclamation.

Consumerism and waste products.

Environment Protection Act.; Air (Prevention and Control of Pollution) Act.; Water (Prevention and control of Pollution) Act; Wildlife Protection Act; Forest Conservation Act; Issues involved in enforcement of environmental legislation.

Public awareness.

Human Population and the Environment: population growth, variation among nations, population explosion, Family Welfare Programme.

Environment and human health: Human Rights, Value Education, HIV/AIDS.

Women and Child Welfare.

Role of Information Technology in Environment and human health.

Disaster Management

Theory

Natural Disasters- Meaning and nature of natural disasters, their types and effects. Floods, drought, cyclone, earthquakes, landslides, avalanches, volcanic eruptions, Heat and cold waves, Climatic change: global warming, Sea level rise, ozone depletion.

Man Made Disasters- Nuclear disasters, chemical disasters, biological disasters, building fire, coal fire, forest fire, oil fire, air pollution, water pollution, deforestation, industrial waste water pollution, road accidents, rail accidents, air accidents, sea accidents.

Disaster Management- Effect to migrate natural disaster at national and global levels. International strategy for disaster reduction. Concept of disaster management, national disaster management framework; financial arrangements; role of NGOs, community –based organizations and media. Central, state, district and local administration; Armed forces in disaster response; Disaster response; Police and other organizations.

Practical

Pollution case studies.

Field work: Visit to a local area to document environmental assets river/ forest/ grassland/ hill/ mountain, visit to a local polluted site-Urban/Rural/Industrial/Agricultural, study of common plants, insects, birds and study of simple ecosystems-pond, river, hill slopes, etc.

Role of Information Technology in Environment and human health - Case Studies.

Types of crops and modes of plant reproduction. Line development and maintenance breeding in self and cross pollinated crops (A/B/R and two line system) for development of hybrids and seed production. Genetic purity test of commercial hybrids. Advances in hybrid seed production of maize, rice, sorghum, pearl millet, castor, sunflower, cotton pigeon pea, Brassica etc. Quality seed production of vegetable crops under open and protected environment. Alternative strategies for the development of the line and cultivars: haploid inducer, tissue culture techniques and biotechnological tools. IPR issues in commercial plant breeding: DUS testing and registration of varieties under PPV & FR Act. Variety testing, release and notification systems in India. Principles and techniques of seed production, types of seeds, quality testing in self and cross pollinated crops.

Practical

Floral biology in self and cross pollinated species, selfing and crossing techniques. Techniques of seed production in self and cross pollinated crops using A/B/R and two line system. Learning techniques in hybrid seed production using male-sterility in field crops. Understanding the difficulties in hybrid seed production, Tools and techniques for optimizing hybrid seed production. Concept of rouging in seed production plot. Concept of line its multiplication and purification in hybrid seed production. Role of pollinators in hybrid seed production. Hybrid seed production techniques in sorghum, pearl millet, maize, rice, rapeseed-mustard, sunflower, castor, pigeon pea, cotton and vegetable crops. Sampling and analytical procedures for purity testing and detection of spurious seed. Seed drying and storage structure in quality seed management. Screening techniques during seed processing viz., grading and packaging. Visit to public private seed production and processing plants.

Agricultural Journalism: The nature and scope of agricultural journalism characteristics and training of the agricultural journalist, how agricultural journalism is similar to and different from other types of journalism. Newspapers and magazines as communication media: Characteristics; kinds and functions of newspapers and magazines, characteristics of newspaper and magazine readers. Form and content of newspapers and magazines: Style and language of newspapers and magazines, parts of newspapers and magazines. The agricultural story: Types of agricultural stories, subject matter of the agricultural story, structure of the agricultural story. Gathering agricultural information: Sources of agricultural information, interviews, coverage of events, abstracting from research and scientific materials, wire services, other agricultural news sources. Writing the story: Organizing the material, treatment of the story, writing the news lead and the body, readability measures. Illustrating agricultural stories: Use of photographs, use of artwork (graphs, charts, maps etc.), writing the captions. Editorial mechanics: Copy reading, headline and title writing, proofreading, lay outing.

Practical

Practice in interviewing. Covering agricultural events. Abstracting stories from research and scientific materials and from wire services. Writing different Types of agricultural stories. Selecting pictures and artwork for the agricultural story. Practice in editing, copy reading, headline and title writing, proofreading, lay outing. Testing copy with a readability formula. Visit to a publishing office.